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Abstract

In order to evaluate the reliability of the soil moisture product obtained by means of the
LISFLOOD hydrological model (De Roo et al., 2000), we compare it to soil moisture
estimates derived from ERS scatterometer data (Wagner et al., 1999).

Once calculated the root mean square error and the correlation between the two soil5

moisture time series on a pixel basis, we assess the fraction of variance that can be
explained by a set of input parameter fields that vary from elevation and soil depth to
rainfall statistics and missing or snow covered ERS images.

The two datasets show good agreement over large regions, with 90% of the area
having a positive correlation coefficient and 66% having a root mean square error minor10

than 0.5. Major inconsistencies are located in mountainous regions such as the Alps
or Scandinavia where both the methodologies suffer from insufficiently resolved land
surface processes at the given spatial resolution, as well as from limited availability of
satellite data on the one hand and the uncertainties in meteorological data retrieval on
the other hand.15

1 Introduction

Soil moisture is well recognized as a key variable of the hydrological cycle since it
exerts an essential control on the water and energy balance, such as the partitioning of
precipitation in infiltration and runoff and of the available energy at the land-atmosphere
interface into sensible and latent heat fluxes.20

It is a variable of great interest for meteorology because it represents the lower
boundary condition for meteorological forecast models (see Ferranti and Viterbo,
2006), and it exerts a feedback effect on rainfall especially in continental areas (see
Castelli et al., 1996). In hydrology soil moisture is an important term in any water bal-
ance determination, and knowledge of soil moisture conditions is important to derive25

the initial conditions for flood forecasting; at the same time soil moisture serves as a
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key variable for drought monitoring (see McVicar and Jupp, 1998). In ecology it con-
trols the mixing and competition between different plant species (see Scanlon et al.,
2005), and in agriculture the soil moisture distribution determines irrigation practices
(Kite and Droogers, 2000), with the resulting control on yield.

When determining soil water content over large areas, it is necessary to balance5

the requirements of spatial and temporal resolution of the sampling as well as of the
accuracy of measurement. The measurement methods can be roughly classified as
ground based and remote, and as direct and indirect.

The most accepted method is the gravimetric one. This ground based direct mea-
surement is the standard procedure for soil water determination against which all other10

methods, including other field measurements such as Time Domain Reflectometry, are
calibrated. Since it consists of an instantaneous point measurement, it is not possible
to use such method in a long term monitoring campaign. Field methods are generally
complex, labour intensive, and expensive. For these reasons the availability of field
data is strongly limited to a small number of samples and a short period of data collec-15

tion even for small catchment areas. Local scale variations in soil properties, terrain,
and vegetation cover make the selection of representative points in the field difficult.
Despite the attempts to relate ground measurements to larger catchment scales (e.g.
Western et al., 2002), it is necessary to exploit other methods for applications over
large regions.20

The main alternatives to direct measurements in the field comprise retrieving soil
moisture by satellite observations and estimating soil moisture based on hydrological
models.

Remote sensing techniques allow covering large spatial extents at high temporal
frequency with uniform measurement. Information retrieved in several regions of the25

electromagnetic spectrum has been used for the detection of soil moisture.
Most efforts are concentrated on exploiting the potential of direct techniques, which

are based on active and passive microwaves methods (e.g. Engman and Chauhan,
1995; Schmugge, 1998). The soil depth which the retrieved soil moisture is referred
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to is a function of the wavelength of the microwave radiation, but essentially limited
to the top-soil layer, mostly even to the upper 5 cm. Moreover, the data are difficult
to interpret due to many confounding factors, such as vegetation characteristics and
surface roughness. The major constraints in the use of those data for operational
hydrological applications are related to the shortcomings in the coupling of the spatial5

resolution and the temporal frequency features: high resolution data are available at
low frequencies (e.g. 30 m resolution, 35 days revisit time for ERS SAR), while high
frequency data have low spatial resolution (e.g. 50 km resolution, 1 day revisit time for
NOAA AMSU).

The indirect techniques based on measures in the optical and thermal infrared10

ranges (e.g. 1.1 km resolution, 1 day revisit time for NOAA AVHRR) describe the prop-
erties of a surface, but not the properties of the soil under the surface. However, these
techniques allow for the determination of surface energy fluxes that can be applied
in soil-vegetation-atmosphere transfer models (e.g. Castelli et al., 1999). A number
of approaches have been proposed based on measurements of surface temperature15

evaluated in the thermal infrared region (e.g. Price, 1980), possibly integrated by vege-
tation information retrieved in the visible channels (e.g. Carlson et al., 1995; Niemeyer,
2000). These methods, mainly built upon AVHRR data, have been transposed to the
new generation sensors, such as MODIS (e.g. Nishida et al., 2003) and METEOSAT
Second Generation (e.g. Verstraeten et al., 2006), with improved spatial and radio-20

metric resolution. The quantity and quality of ground data requirements as well as
the effect of cloud cover limit the applicability of certain techniques in the context of
long-term and wide-area studies.

Another alternative is represented by estimating soil moisture based on hydrological
or land surface models. Here the spatial and temporal sampling scales become vari-25

ables to be chosen by the modeller, who has to take into account indeed the availability
of ancillary information at the chosen scale and the constraints related to CPU time.
The vertical distribution of soil moisture can be well represented by different soil water
compartments within the model. In general, land surface distributed hydrological mod-
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els consider at least the root zone, which is the most important zone in terms of runoff
generation and land-atmosphere interaction.

In large scale applications an explicit representation of soil water processes is difficult
to be obtained and its parameters to be retrieved, hence a certain degree of general-
ization and simplification is necessary. Accordingly, most large-scale hydrological or5

land surface models represent soil moisture as a simplified storage term, and water
exchange processes as conceptual relations. The need of input meteorological data
often leaves the issues related to network density and reliability and spatial distribution
not solved.

For both satellite and model derived soil moisture products it is necessary to perform10

calibration and validation, in order to understand whether the derived products are
able to represent in a reliable way the soil moisture spatial and temporal variability.
The validation strategies for both satellite and model derived soil moisture products
can be summarized into three main methods, namely the comparison to field data
(at-point validation), to aggregate measurements (aggregate/global validation), and to15

independent spatial products (point-by-point validation).
When comparing to field data, it is possible to benefit from measurements of soil

moisture and of water and energy fluxes. In the last years, a great effort of field data
collection has been carried out in order to obtain ground truth data for remote sensing
products development and to gain a deeper insight into processes (e.g. HAPEX-Sahel,20

Goutorbe et al., 1994; FIFE, Sellers et al., 1992). However, the space and time cover-
age of such datasets is limited and the data are often not readily available. Moreover,
it is necessary to deal with the high spatial variability of soil moisture and the scale
mismatch issue.

The aggregate validation approach consists in summarizing the data by means of25

water balance models for obtaining variables that are currently measured, e.g. river
discharge (see Scipal et al., 2005) and atmospheric water vapour fluxes (see Senevi-
ratne et al., 2004; Hirschi et al., 2006). The major weakness of such methods is that
the aggregation of the information causes the loss of any insight into soil moisture spa-
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tial variability. In addition, the over-parameterization of water balance models leaves
some degrees of freedom in the calibration, which could result in a poor representation
of the processes not involved in the definition of the objective function (see Refsgaard,
2000).

In the comparison to independent spatial products it is possible to have a direct in-5

sight into the spatial variability of the processes. The issues related to the mismatch
of scales and soil depths have to be considered carefully. It is worth noticing that the
independent product itself should have been validated. The evaluation of the agree-
ment of independent soil moisture data should be considered as a preliminary exercise
towards the development of data assimilation frameworks.10

In this work we present the results of the validation exercise for the LISFLOOD (De
Roo et al., 2000) modelled soil moisture maps against the those derived from scat-
terometer data of ERS satellite (Wagner et al., 1999). In the following we present the
two datasets, define the framework of the comparison, and present and discuss the
results.15

2 Data

2.1 The ERS/SCAT soil water index

In this section, the Global Soil Moisture Archive from ESA ERS Scatterometer Data
provided by the Vienna University of Technology (Wagner et al., 1999) is presented.

The soil moisture data of the Global Soil Moisture Archive have been obtained by20

the scatterometer on board the ERS-1 and ERS-2 satellites, operated by the European
Space Agency (ESA). The ERS scatterometer operates at 5.3 GHz (C-band) vertical
polarization, collecting backscatter measurements over an incidence angle range from
18◦ to 59◦, using three sideways-looking antennas. The sensor achieves global cover-
age within 3 to 4 days, when each beam provides measurements of radar backscatter25

from the sea and land surface for overlapping 50 km resolution cells, with a 25 km grid
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spacing at approximately 10:30 and 22:30 local time for ascending and descending
tracks, respectively. Since the scatterometer can not be operated at the same time
as the synthetic aperture radar (SAR) mounted on ERS-1 and ERS-2, the temporal
sampling rate could be reduced, particularly over Europe where the SAR is often on.

Wagner et al. (1999) proposed a soil moisture retrieval technique based on a change5

detection approach. Satellite remote sensing is capable of retrieving information only
about the soil surface layer. Even though microwaves penetrate the surface layer to a
certain extent (depending on the wavelength and soil wetness), the information gained
is limited to the topsoil layer. In the case of C-band microwaves, the derived surface
soil moisture ms can be referred to a soil depth smaller than 5 cm. The semi-empirical10

modelling approach developed by Wagner et al. (1999) uses the information contained
in surface soil moisture time series ms(t) to estimate the status of the profile soil mois-
ture content. The method has been derived by considering a two-layer soil model: The
first layer corresponds to the remotely sensed surface layer, the second one to the re-
maining soil depth. Assuming that the water flux between the two layers is proportional15

to the difference in soil moisture content between the two layers, the following simple
water balance equation is used to establish a link between the area-average soil water
content in the soil column, Θ, and the soil water content of the remotely sensed surface
layer, Θs:

L
dΘ(t)
dt

= C · [Θs(t) −Θ(t)] , (1)20

where t is time, L the depth of the reservoir layer, and C an area-representative
pseudo-diffusivity constant. Assuming that C is constant, and setting T=L/C, the so-
lution of the differential equation is:

Θ(t) =
1
T

t∫
−∞

Θs(t
′)exp

[
− t−t′

T

]
dt′ . (2)

Since the ERS scatterometer provides measurements at irregular time intervals, the25
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continuous formulation of the integral equation is replaced by its discrete analogous:

SW I(t) =

∑
i
ms(ti ) exp

[
t−ti
T

]
∑
i

exp
[
t−ti
T

] . (3)

The discontinuous time series of ERS scatterometer measurements, ms (ti ), replaces
the continuous parameter Θs(t). Equally, Θ(t) is replaced by a quantity called the
soil water index (SWI). Wagner et al. (1999) have shown that SWI, which (like ms) may5

take on values between 0 and 1, spans the range between Θwp and Θmax=(Θf c+Θs)/2,
where Θwp, Θf c and Θs are area-representative values of the wilting point, field capac-
ity and saturation, respectively. Once determined the soil water retention features SWI
can be transformed into any other soil water content index.

ERS scatterometer data from the years 1992 to 2000 have been processed globally10

and can be viewed on the website http://www.ipf.tuwien.ac.at/radar/ers-scat (Scipal et
al., 2002).

The SWI dataset covers the globe with a 50 km space resolution and a 10 days
time frequency. The snow/ice covered areas and the missing data are masked in the
dataset.15

SWI has undergone several validation exercises. It has been compared to meteo-
rological information at local and global scales (Wagner, 1998; Scipal, 2002), as well
as to in-situ soil moisture measurements (Ceballos et al., 2005). Scipal et al. (2005)
processed SWI over the Zambesi river, south-eastern Africa, by means of a logarithmic
regression model for obtaining a comparison to hydrometric measurements. Parajka20

et al. (2006) first compared SWI to soil moisture estimates obtained by hydrological
modelling over 320 Austrian catchments, and performed a data assimilation exercise
in order to evaluate the potential for improving hydrological predictions in ungauged
catchments.
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2.2 The LISFLOOD model

The LISFLOOD (De Roo et al., 2000, 2001) is a distributed, physically based rainfall-
runoff and hydrodynamic model. It simulates processes at the soil-canopy-atmosphere
interface, e.g. separation of precipitation into snow and rainfall depending on temper-
ature, interception and evapotranspiration, snow accumulation and melting. The soil5

compartment of LISFLOOD consists of a two-layer soil model. Infiltration of effective
precipitation, soil evaporation and plant water uptake take place from the upper soil
layer. The model considers soil freezing, impeding infiltration if a certain threshold is
reached. Accordingly, the soil water content of the upper soil layer mirrors well the bal-
ance between precipitation supply and climate and vegetation demand. The lower soil10

layer represents essentially a storage term that produces a slow runoff component and
recharges the groundwater compartment. Once infiltrated, water percolates through
the bottom soil layer to the groundwater compartment of LISFLOOD. The water trans-
ferred to the channel network is routed with either a kinematic or a dynamic wave.
While LISFLOOD simulates surface processes using physically-based algorithms, the15

subsurface flow modelling routine is conceptual, requiring the calibration of groundwa-
ter parameters for individual catchments.

The LISFLOOD model is currently running within the European Flood Alert Sys-
tem (EFAS) on a pre-operational basis (De Roo and Thielen, 2004). In the EFAS
framework, LISFLOOD is set up on a 5 km grid covering the whole of Europe. The20

model requires static input information related to topography, soils, land use, and
channel geometry. The soil map has been derived from the European Soil Database
(European Soil Bureau Network and the European Commission, 2004), and soil hy-
draulic properties were taken from the HYPRES database (Wösten et al., 1999).
Land use-related input maps have been derived from a mosaic of CORINE (Eu-25

ropean Environment Agency, 2005) and GLC2000 (Bartholomei et al., 2002) land
cover databases. The meteorological information consists of daily station data pro-
vided by the MARS-STAT activity of IPSC-JRC (so called JRC-MARS database;
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http://agrifish.jrc.it/marsstat/datadistribution/) that are spatially interpolated. The tem-
poral model flexibility allows for a time-cascading structure: The water balance is sim-
ulated with the JRC-MARS data at a daily time step, producing daily soil moisture
estimates; its output serves as initial conditions for the flood forecasting mode of EFAS
at a finer time step.5

3 Methods

In order to compare the LISFLOOD first soil layer water content to the ERS scatterome-
ter derived Soil Water Index, we converted the two products into a unique soil moisture
representation. We then reprojected and resampled their grids to a common space
extent and pixel size and selected the dates available in both the datasets; finally we10

made pixel by pixel comparisons on the extracted time series. These results were
compared to spatial maps of various parameters such as elevation, soil depth, rainfall
statistics, and the number of missing or snow covered scatterometer samples.

In order to obtain a unique index of soil water content, SWI has been transformed
into available soil moisture Θ by means of the following equation:15

Θ = Θwp + SW I ·
(
Θf c +Θs

2
−Θwp

)
, (4)

where Θwp, Θf c and Θs are area-representative values of the wilting point, field ca-
pacity, and saturation. Then both LISFLOOD and SWI-derived available soil moisture
have been transformed by means of the Van Genuchten pedotransfer function into soil
suction (pF ) values as follows:20

S =
Θ −Θr

Θs −Θr
(5)

h =
1
α

[(
1
S

) λ+1
λ

− 1

] 1
λ+1

(6)
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pF = log(h) (7)

where Θ, Θs and Θr are the volumetric water content and its saturation and residual
values respectively; S is the saturation degree; h is the soil water pressure head; α
and λ are the Van Genuchten parameters; pF is the so-called soil suction.

Soil suction commonly ranges between 1.0 for very wet conditions up to 5.0 for very5

dry soils. The pF value describes the forces necessary for plants to apply in order to
extract water from the soil for their use. It incorporates variations in the water holding
capacity of different soil types and thus allows for comparison of the soil water status
at different locations throughout Europe.

Since soil information is not available for the SWI database, the soil parameters10

Θr , Θs, Θwp and Θf c, as well as α and λ, have been determined from the soil maps
available for EFAS.

In order to obtain the matching of the observed area and to enable easier compar-
isons, LISFLOOD pF maps have been resampled from 5 to 50 km by averaging the
cell values. We chose to perform the resampling directly on pF values in order not15

to obtain mismatches between water content and hydraulic properties (e.g. available
soil moisture larger than saturation) when averaging samples belonging to different soil
texture classes.

With the aim of tackling the errors introduced by spatial averaging, we calculated the
empirical variogram, which is the function γ(h) that measures one half of the average20

squared difference of data values separated by the lag distance h, on a sample of
both pF datasets. We evaluated the amount of variance associated to the resampling
operation, which is a measure of the spatial scaling error.

ERS SWI data are available for the years 1992 to 2000 at a 10 days time frequency.
In the EFAS setup, LISFLOOD data are available from 1990 onwards at a daily fre-25

quency. However, since in the years 1990–1995 the number of available meteorologi-
cal stations is quite poor, we decided to perform the analysis on the available dates in
the period 1996–2000.

The two pF datasets have been compared by means of the root mean square error
1237
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(RMSE) and the correlation coefficient (R):

RMSE =

√
1
N

∑
N

(x1 − x2)2 (8)

R =
cov(x1, x2)√

cov(x1, x1) · cov(x2, x2)
, (9)

where the covariance function is defined as:

cov(x1, x2) =
1
N

∑
N

(x1 − µ1)(x2 − µ2). (10)5

In the equations xi represent the pF values, µi their average and N the number of
samples, respectively. RMSE and R allow depicting the main differences between the
two datasets. For a major insight into the error structure it is possible to calculate the
slope and intercept of the linear regression, as well as to explore by means of cross-
correlation whether any significant time shift occurs.10

In order to evaluate the relation of the error to any model base information or process
representation, we evaluated the amount of variance of RMSE and R that can be ex-
plained by the model base maps and to some rainfall statistics and ERS scatterometer
processing summary maps.

4 Results and discussion15

The ERS scatterometer and LISFLOOD modelled datasets have been compared by
means of the indices RMSE and R calculated on both the spatial and temporal domains
as follows.

When working in the spatial domain, the indices are calculated on all valid data
couples for each available date. The resulting RMSE and R time series are presented20
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in Fig. 1. R and RMSE have an average of 0.54 and 0.50, and a standard deviation
of 0.16 and 0.09, respectively. On the right-hand axis the percent of not valid SWI
samples is reported; it has a marked seasonal behaviour because the snow covered
samples are taken into account. Such seasonality effect is partly visible in the indices
series.5

When working in the temporal domain, the indices are calculated on the pF time
series for each location. The resulting R and RMSE maps are shown in Figs. 2 and 3.
In this case, R and RMSE have an average of 0.48 and 0.45, and a standard deviation
of 0.30 and 0.16, respectively.

In order to make the RMSE obtained on pF series comparable to literature results10

(see Verstraeten et al., 2006, for an overview) we estimated that, given the soil texture
features, a 0.05 m3/m3 error ranges between 0.38 and 1.03 pF units at wilting level and
between 0.23 and 0.60 pF units at field capacity.

We combined the RMSE and R maps into a class map (Fig. 4) obtained by binning
RMSE and R as shown in Table 1. In the class map it is easier to delineate the spatial15

patterns of the errors.
For evaluating the influence of the scale mismatch between the two datasets on the

results, we calculated the empirical semi-variogram for a 106 km2 square section of the
soil moisture maps located in central Europe. The choice of such extent allows us to
skip the problems arising when working on a fragmented domain. In order to detect20

any seasonality effect we processed all the maps available for the entire period; the
results for 1998 are presented.

The boxplots in Figs. 5 and 6 represent a summary of the semi-variograms for all the
available dates in 1998. At the 250 km lag both the datasets present a median semi-
variance of 0.06. The ERS scatterometer median semi-variogram shows a quite linear25

behaviour, giving the impression that it has not reached yet the sill; the LISFLOOD
one has a rapid increase, then approaching a rather asymptotic behaviour, being in the
explored range of lags major than the ERS scatterometer one. Such behaviour, with
the short lags being dominated by the larger variability of the higher resolution data, is
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deemed to be acceptable.
Figures 7 and 8 represent the time series of the median semi-variance at the 50 km

and 100 km lags for both the datasets. It is evident a rather different seasonal be-
haviour: the ERS scatterometer derived maps have larger spatial variability in winter-
spring, the LISFLOOD ones in summer.5

The root of the median variance for a 25 km lag is 0.17pF units, which corresponds
on average to 0.014 m3/m3. As a reference, Ceballos et al. (2005), working on a
2500 km2 area with a network of 20 TDR stations, reported a time averaged standard
deviation of plant available water of 0.034 m3/m3.

Table 2 reports the percentages of RMSE and R variances that can be explained10

both by static information (elevation and soil depth) and statistics of the meteorological
inputs (average annual rainfall and annual rainfall coefficient of variation) for the LIS-
FLOOD model, and by summary statistics of the ERS SWI data (percent of missing
and snow covered dates). The boxplots presented in Figs. 9 to 14 allow having an
insight into the relations between the predictands and the predictors.15

Figure 9 shows that the goodness of fit has an evident decreasing trend when terrain
elevation increases. Elevation has a key role in soil moisture space-time variability
since it strongly controls the distribution of several meteorological variables, such as
air temperature and potential evapotranspiration, or precipitation amount and phase
(rain/snow).20

Figure 10 represents the distribution of RMSE and R within soil depth bins. It shows
that thin soils have large RMSE and low R. Since the SWI calculation is based on a
constant 1 m soil depth over the whole area, a better correspondence for deep soils
is obtained. The water content of a thin soil has a pronounced extreme behaviour,
with values jumping easily from saturation to wilting level. On the contrary, deep soils25

have more homogeneous water content over a large range of depths. In order to over-
come the inconsistent reference soil depth of SWI values and LISFLOOD derived soil
moisture, either the SWI calculation could be repeated on a spatially differentiated soil
depth, or the LISFLOOD model run could be performed on a fixed 1 m one. We would

1240

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/1227/2008/hessd-5-1227-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/1227/2008/hessd-5-1227-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 1227–1265, 2008

LISFLOOD modelled
and the ERS/SCAT

derived soil moisture

G. Laguardia and
S. Niemeyer

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

recommend the first choice; however major problems in the SWI algorithm parameter-
ization could occur. Soil texture has not been investigated since its influence has been
cancelled out by the use of pF , and the preparation of both pF datasets by means of
the same soil texture map.

The statistics of the annual rainfall (its average and coefficient of variation) have5

been considered for both evaluating the reliability of the meteorological input data and
of the interpolation procedures, and assessing the relations between the pF datasets
in different climatic divisions. Observing the distribution of RMSE and R within average
annual rainfall bins (Fig. 11) it is difficult to figure out a homogeneous behaviour. This
can be partly explained by the fact that a sample with a certain error in rainfall repre-10

sentation falls into a bin where valid samples exist. However, it is possible to observe
that both RMSE and R are worse in extreme (both drier and wetter) climatic conditions.
In such conditions the change detection approach used in the processing chain of the
ERS scatterometer data is weaker, since the dry and wet thresholds are not reached
in wet and dry climate divisions, respectively.15

The coefficient of variation (CV) of a hydrological variable is often considered in
regional analysis studies since it allows delineating homogeneous regions. On the
other hand, high CV can be related to data having poor accuracy in a certain area. In
Fig. 12, the bins with the highest rainfall CV have lower R and higher RMSE.

The percent of missing and snow/ice covered ERS samples affect the SWI calcu-20

lation in certain regions, as confirmed by the variances of RMSE and R explained by
such variables (see Table 2). The most evident effect of the number of missing samples
(see Fig. 13) is an increase in RMSE, while R is not significantly affected. The missing
ERS scatterometer acquisitions can be deemed to be randomly distributed within a
time series in a certain location; the algorithm for the calculation of SWI is able to face25

to few consecutive missing dates with a slight deviation from the observed soil mois-
ture development. This causes almost no effects in terms of R (the seasonal behaviour
is still respected), while RMSE increases (accumulation of deviations at the short time
scales). On the contrary, the increase of snow/ice covered samples affects more signif-
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icantly R (see Fig. 14). In cold regions the missing data are clustered into one season;
at the end of the cold period, the algorithm has to start form an initial condition that can
be deemed to be a guess, leading to poor representation of seasonality, hence low R.
In the other hand, the seasonal soil moisture variability is quite low, so the effects on
RMSE are not so evident.5

The ERS SWI derived and the LISFLOOD modelled soil suction have a good agree-
ment over large regions, with almost 90% of the area having a positive R and 66%
having RMSE<0.5. The two datasets show large differences in the Alpine region, in
eastern Spain, in northern Scandinavia and on the Carpathian mountains.

The main differences between the two pF timeseries can be observed in the moun-10

tainous areas, as confirmed by the variances explained by the elevation and the percent
of snow/ice affected ERS samples. Parajka et al. (2006) obtained similar results over
Austria. In mountainous regions both datasets have to face a strongly heterogeneous
landscape with large gradients in hydrological processes. The poor spatial resolution
of ERS data cannot account for such heterogeneity. In addition, since the ERS soil15

moisture data availability is strongly reduced in areas where snow or ice frequently
hide the surface, it is expected that also the SWI calculation is affected, as previously
explained.

With regard to LISFLOOD soil moisture modelling, the morphologic complexity as
well as the uneven distribution of meteorological stations and their low spatial repre-20

sentativeness cause major uncertainties in meteorological data retrieval, which affect
the quality of the modelled snow accumulation and melting.

In summary, the representation of soil moisture processes in the mountainous re-
gions remains unsolved on the spatial scales considered: Neither ERS pF data can
be considered being reliable, nor do the related processes as modelled by LISFLOOD25

produce fully satisfying results.
In addition to the mentioned problems related to snow, in Scandinavia the significant

presence of water bodies affects the soil moisture retrieval for both methods. Apart from
the difficulties related to the correct superimposition of the surface parameters (e.g.
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land use and soil maps) in such a fragmented landscape, it is not possible to calibrate
the hydrologic model against observed discharge because it is strongly influenced by
the retention effect of the lakes. Also the microwave signal is strongly affected by the
large surface covered by free water (Wagner et al., 1999).

With regards to eastern Spain, by means of visual inspection of the time series we5

discovered that in certain locations the effect of irrigation practices is quite evident: in
winter the time series agree quite well, while during summer major differences occur,
with ERS pF being well below LISFLOOD pF (see, e.g. Fig. 15). The satellite data
are able to detect irrigation, while, on the contrary, irrigation is not simulated by the
LISFLOOD model. In order to gain evidence of the actually irrigated areas in east-10

ern Spain, in Fig. 16 we superimposed the classified error map reported in Fig. 4 to
the Global Map of Irrigation Areas (Siebert et al., 2006, 2007). The hypothesis of a
strong influence due to irrigation was confirmed. It is worth to mention that it is possi-
ble to detect the influence of irrigation over Spain because of its strong control over soil
moisture seasonality in that area. In areas where irrigation supply is used as a minor15

addition to rain-fed agriculture, a negligible signature on the soil moisture cycle is ex-
pected; accordingly, in other irrigated areas no influence of irrigation on ERS-derived
soil moisture could be detected.

However, irrigation practice explains the mismatch of the time series for a limited
number of locations. Other areas are affected by the high amount of missing SWI20

samples. We feel that also some problems related to the change detection occurred,
with certain areas having low pF in summer and high pF in winter. In dry areas it is
difficult to detect the dry and wet edges and it is necessary to correct them manually
(Wagner et al., 2003).

5 Conclusions25

The comparison between the LISFLOOD modelled and the ERS/SCAT derived soil
moisture products has revealed that the two datasets match well over large regions,
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particularly in lowlands and in areas far from extreme climatic conditions. The correla-
tion coefficient is positive over the 90% of the area; the root mean square error is minor
than 0.5pF units (approximately 0.045 m3/m3) over the 66% of the area. The major
inconsistencies are located in the Alps and in the Scandinavia regions, where both
models suffer because of the uncertainty of the available information, namely the lim-5

ited availability of satellite data and the poor behaviour in heterogeneous landscapes
at the given spatial resolution of ERS SWI data on the one hand, and the uncertainties
in meteorological data retrieval and interpolation as well as in snow-ice modelling of
the LISFLOOD model on the other hand.

For LISFLOOD soil moisture validation purposes ground measurements and other10

satellite products will be considered in forthcoming works. The continuous model devel-
opment and its calibration, as well as the update of the model base maps will improve
its soil moisture estimates.

Acknowledgements. The authors would like to thank the Microwaves Remote Sensing Group
of the Vienna University of Technology for providing the ERS/SCAT data and for the fruitful15

discussions.
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Table 1. Definition of the classes shown in Fig. 4. The percent of samples in each class is
reported.

Class RMSE bins R bins % samples

1 0 0.5 0.5 1 41.4%
2 0.5 1.2 0.5 1 20.0%
3 0 0.5 0 0.5 18.6%
4 0.5 1.2 0 0.5 9.9%
5 0 0.5 −1 0 5.8%
6 0.5 1.2 −1 0 4.4%
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Table 2. Ratio of the RMSE and R variances that can be explained by the selected predictors.

Predictor
Explained variance
RMSE R

Elevation (Fig. 9) 8% 8%
1st layer soil depth (Fig. 10) 18% 0%
Average annual rainfall (Fig. 11) 11% 0%
Annual rainfall coefficient of variation (Fig. 12) 4% 1%
% of missing samples (Fig. 13) 15% 10%
% of snow/ice covered samples (Fig. 14) 20% 26%
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Figure 1. pF Lisflood - pF ERS R and RMSE time series. In the right-hand axis the percent of not valid 
SWI samples is reported.  
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Figure 2. pF Lisflood – pF ERS comparison. Correlation coefficient map. 
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Figure 5. Summary of the semi-variograms of the ERS scatterometer derived pF maps for all the available 

dates in 1998. 
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Figure 6. Summary of the semi-variograms of the LISFLOOD derived pF maps for all the ERS 

scatterometer pF available dates in 1998. 

 

Fig. 5. Summary of the semi-variograms of the ERS scatterometer derived pf maps for all the
available dates in 1998.
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Figure 7. Time series of the 50 Km lag semi-variance of the ERS scatterometer (blue) and LISFLOOD 

(red) derived pF maps for 1998. 
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Figure 8. Time series of the 100 Km lag semi-variance of the ERS scatterometer (blue) and LISFLOOD 

(red) derived pF maps for 1998. 

 

Fig. 7. Time series of the 50 km lag semi-variance of the ERS scatterometer (blue) and LIS-
FLOOD (red) derived pf maps for 1998.
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Figure 9. RMSE and Correlation coefficient distributions within elevation bins. 
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Figure 11. RMSE and Correlation coefficient distributions within average annual rainfall bins. 
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Figure 12. RMSE and Correlation coefficient distributions within annual rainfall coefficient of variation 
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Figure 13. RMSE and Correlation coefficient distributions within percent of missing SWI samples bins. 
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Figure 14. RMSE and Correlation coefficient distributions within percent of snow covered SWI samples 
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Fig. 13. RMSE and Correlation coefficient distributions within percent of missing SWI samples
bins.
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Figure 15. ERS scatterometer and LISFLOOD derived pF time series for a sample with extended 

irrigation practice. 
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Figure 16. Error class map (CLASS) superimposed to the Global Map of Irrigation Areas (GMIA; Siebert 

et al., 2006; Siebert et al., 2007) over the Iberian Peninsula. GMIA reports the percent of the surface 

having infrastructures for irrigation; in white pixels no information is available. The arrow highlights the 

sample whose time series is plotted in figure 15.  

Fig. 15. ERS scatterometer and LISFLOOD derived pf time series for a sample with extended
irrigation practice.
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et al., 2006; Siebert et al., 2007) over the Iberian Peninsula. GMIA reports the percent of the surface 

having infrastructures for irrigation; in white pixels no information is available. The arrow highlights the 

sample whose time series is plotted in figure 15.  

Fig. 16. Error class map (CLASS) superimposed to the Global Map of Irrigation Areas (GMIA;
Siebert et al., 2006; Siebert et al., 2007) over the Iberian Peninsula. GMIA reports the percent
of the surface having infrastructures for irrigation; in white pixels no information is available.
The arrow highlights the sample whose time series is plotted in Fig. 15.
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